MINNCARE DRY FOG SYSTEM

Current Methods of Room Disinfection

⇒Surface Wiping

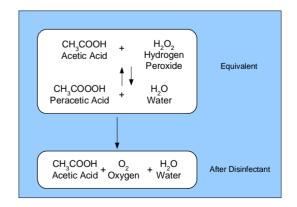
- ⇒Manual Spraying (with Spray Bottles)
- ⇒Heating Process (Vaporization)
- ⇒Cold Process Wet fogging

- Dry fogging

※ Disinfection is NOT a Cleaning Process

Currently Used Chemical Products

- ⇒Alcohol based
- ⇒Formaldehyde based
- ⇒Gluteraldehyde based
- ⇒Quaternary Ammonium Compounds
- ⇒Cocktails of the above


Current Problems

- ⇒Efficiency (more or less broad spectrum biocide)
- ⇒Adaptation of the Micro-Organisms
- ⇒Toxicity of the Chemicals Used
- ⇒Long Contact Time
- \Rightarrow Very Long Time for Venting
- \Rightarrow Neutralization Needed
- ⇔Corrosion
- ⇒Variability of Chemical Application
- ⇔Residuals

Minncare[®] Cold Sterilant

⇒An alternative solution for room

disinfection in Pharmaceutical, Biotech, Medical Facilities,...

Benefits of Minncare[®]

⇒Superior Biocidal Activity

- ⇒All Components are Ultra-pure, Pharmaceutical Quality
- ⇒US EPA (Environment Protection Agency) Registered Sterilant
- ⇒No Heavy Metal Trace Contamination / Stabilizers.
- ⇒Biodegradable Decomposes to Acetic Acid, Water and Oxygen
- \Rightarrow No Toxic Aldehyde Type Vapors, Easy to Vent
- ⇒Validated Residual Vapor Detection System

Minncare[®] Applications

⇒Water Systems Disinfection
Tanks, Piping, Resins, Filters, RO Membranes,...
⇒Surface Disinfection (Wiping and/or Manual Spraying)
⇒Fogging

Minncare[®] Biocidal Activity

Minncare^{\mathbb{R}} is a potent antimicrobial agent and is effective against a broad spectrum of microorganisms, including:

- ⇒Bacteria ⇒Yeast and Molds
- ⇒Mycobacteria ⇒Bacteria Spores
- ⇔Viruses

Activities of the most important biocides (Guyader, 1996)							
Biocides	Bac Gram -	teria Gram +	Myco- bacteria	Spores	Moulds	Yeasts	Virus
Peracetic acid	+++	+++		++	++	++	++
Alcohols	++	++		0	++	++	+
Alcohol (70?	++	++	0	+	+	++	+
Glutaraldehyde	+++	+++	++	+	+++	++	++
Quat Ammonium	+++	+*	0	0	+	+	+
Chlorine	+++	+++	++	++	++	++	++
Hydrogen Peroxyde	+++	+++		+	+	+	0
lodine	+++	+++	++	++	++	++	++
* Not active on Pseudomonas							

Minncare[®] Mechanism of Action

⇒Disrupts Sulfhydrl (-SH) and Sulfur (S-S) bonds in proteins and enzymes Important components in cells and membranes are broken by oxidative disruption.

⇒Impede cellular activity by disrupting chemosmotic function of lipoprotein cytoplasmic membrane transport through rupture or dislocation of cell walls

⇒Denature the properties of protein components by altering the nucleic acid structure of organisms.

⇒Damage vegetative cells by oxidation with hydroxy radicals.

 \Rightarrow Produces organic radicals that act as reducing agents for spores.

"NO CHANCE" For Micro-Organisms to Build a Resistance

Minncare[®] In Vitro Aqueous Testing

Minncare= Concentration .5%				
Species	Count per ml	Time for 100%		
		kill in minutes		
Bac. subtilis	6 ×10 ⁶	2.5		
Bac: stearothermophilus	6 × 10 ⁶	2.5		
Bac. subtiis NCTC 3610	2.4×10^{9}	5.0		
Bac. mesentericus	1.6 × 10°	5.0		
Clostr. perfringens	1×10^{7}	10.0		
Clastr. tyrobutyricum	1 × 107	5.0		
Sacchar. cereisiae	6 × 107	0.5		
Cand. mycoderma	1.4×10^{8}	0.5		
Hansenula anomala	6.4 × 10 ^a	0.5		
Pichia membronaefaciens	4.8×10^{8}	0.5		
Pen. camerunense	1.7 × 10 ^a	2.5		
Mucor plumbeus	3 × 10 ⁶	2.5		
Geotrichum candidum	2 × 107	0.5		
Byssochlamys nivea	6 × 107	0.5		
Staph. aureus	2.6 × 10°	0.5		
Strept. faecalis	4.6 × 10°	0.5		
Kleb. aerogenes	2.3 × 10°	0.5		
Ps. fluorescens	4.6×10^{9}	0.5		
Ps. aeruginosa	2 × 10°	0.5		
Salm. thyphimurium	2.8×10^{9}	0.5		
Coryneb. rubrum	1 × 107	1.0		
Leuconostoc spec.	5.3 × 10 ⁸	0.5		
Lactob. brevis	1.8 × 10°	0.5		

Minncare[®] AOAC Sporicidal Test

A total of 720 tests were performed on three lots of the test chemical. Results of the test are shown on the chart below.

Lot/Organism	Carrier type	Positives/Total
1 Bacillus subtilis	loop	0/60
1 Bacillus subtilis	cylinder	0/60
1 Clostridium sporogenes	loop	0/60
1 Clostridium sporogenes	cylinder	0/60
2 Bacillus subtilis	loop	0/60
2 Bacillus subtilis	cylinder	0/60
2 Clostridium sporogenes	loop	0/60
2 Clostridium sporogenes	cylinder	0/60
3 Bacillus subtilis	loop	0/60
3 Bacillus subtilis	cylinder	0/60
3 Clostridium sporogenes	loop	0/60
3 Clostridium sporogenes	cylinder	0/60

Estimated spore concentration of filter suspended 1 inch above	<u>B.</u> subtilis spores/filter		
Control: water			
10 ³ spores	9.6 x 10 ³ CFU*		
10 ⁶ spores	> 3 x 103 CFU		
Minncare [®] solution (1%)			
10 ³ spores	<1 CFU		
10 ⁴ spores	<1 CFU		
10 ⁵ spores	<1 CFU		
10 0p0.00			

Deactivation of Organisms by Minncare[®] Vapors

Minncare[®]Toxicity Assessment Summary

Toxicity	Specimen	Results	Reference
summary			
Oral toxicity	Male rats	LD ₅₀ = 2.43 (2.04-2.88) g/kg	Litchfield &
	Femal rats	LD ₅₀ = 2.10 (1.92-2.30) g/kg	Wilcoxon
Inhalation toxicity	Male rats	Established lethal concentration	
	Female rats	LC = 13,439 mg/cubic meter	
Skin sensitivity	Mice	No reaction	Burkhard's
	Humans	No visible effects	Test
Mucos membranes	New Zealand rabbits	Effects completely gone within 7 days	HH Draize
Dermatological	White Guinea	No difference between control	Klugman &
sensitivity qualities	pigs	and test group	Magnusson
Intravenous toxicity	Male rats	LD ₅₀ = 212 mg/kg	Litchfield &
			Wilcoxon

Minncare Dry Fog[™] - A Best Way for Clean Room Disinfection.

⇒An Integral Part of Modern Clean Room Disinfection Procedures

- ⇒EPA Registered
- \Rightarrow Match FDA , PIC/S request.
- ⇒Superior "Dry" Delivery System
- ⇒Better Dispersion than "Wet" Systems
- $rac{=}$ Effective for Very Large Areas: 20 ~ 1000 M³
- \Rightarrow Better for Critical Applications

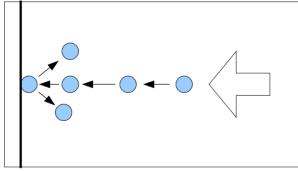
⇒Less Preparation Work

⇒Less Corrosion

⇒Less Residue

Droplet Size effect

⇒The Minncare Dry Fog System Produces 7.5 µm Droplets


-Droplets Behave Like Gas Particles

•Bounce Off Surfaces •Do Not Wet Surfaces

-Float in the Air Due to Brownian Motion.

10µm 1		100µm 30)0µm	0µm ¦
Ultra-Fine Atomization	Fine Atomization	Semi Fine	L Coarse	Coarse Atomization
。 Dry Fog (under	● Fine Mist (10µm~100µ	Fine Drizz (100µr 300µr	le m	Thunderstorm (Over 1.0mm)

The Phenomenon of Dry Fog

⇒Small droplets bounce and do not burst upon collision.

⇒Large droplets burst and make things wet.

Better Dispersion

⇒Minncare Dry Fog Creates a Vapor State, It Disperses Throughout the Room More Completely Than a Liquid Mist.

⇒Better Dispersion Means More Surface Contact.

- \Rightarrow Even Hard to Reach Surfaces, Like Behind Cabinets, Under Tables.
- ⇒Less Condensation.

Relative Humidity

⇒Initial Relative Humidity Should Be <50%.

- ⇒Optimum Activity Between 70 and 80% Relative Humidity.(1)
 - •Measure Using Optional Cable-Free Thermo Hygrometer.
- ⇒Maintain Relative Humidity Below 90% to Avoid Condensation
- Hideharu Shintani Agents of Sterilization, Disinfection, and Antisepsis Used for Medical and Food Affiliation. National Institute of Health Sciences, Japan

Room Size

⇒ The Number of Nozzles or Machines Required is Dependent on the Size of the Room ⇒ Each Nozzle Can Fog Up To 8,750 ft³ (250 m³) Effectively ⇒ Each Machine Can Fog Up To 35,000 ft³ (1,000 m³) With 4 Nozzles

Machine Positioning

⇒Strategically Place the Machine in the Room

- ⇒Aim Nozzles Away from Nearby Walls and Equipment
- ⇒Position the Machines to Allow an Easy Flow of the Fog to All Parts of the Area

General Information

⇒SETUP

-Amount of Minncare: 1.5 ml / M³ of Room Volume

- -Total Solution Volume: Function of the Initial RH
- -Ideal Initial Relative Humidity: less than 55%
- -Ideal Room Temperature: 20-25°C

⇒ PROCESS

-Fog Dispersion Time: 15 - 120 min

-Exposure Time: 1 hour

-Venting Time: 0.5 - 2 hours

⇒ TOTAL PROCESS TIME: 2 - 5 hours (including venting)

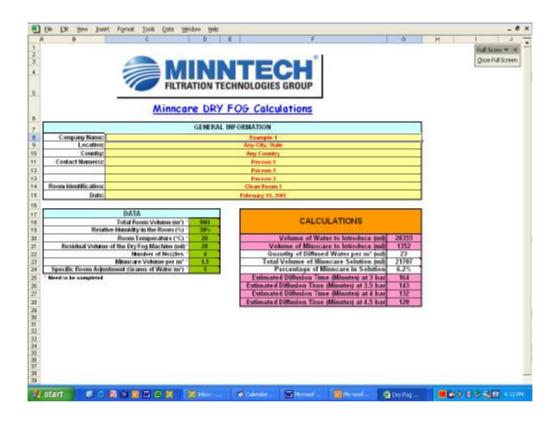
<u>%Notes:</u>1)All individuals MUST evacuate the room during the process.

Assure Safe Operation with the Dry Fog Remote Control Unit

2)After confirmation of chemical vapor residuals below limits (using the Minncare Dry Fog Vapor Detection System) the room may be returned to service.

The General Procedure

–Unpack & Assemble the System


-Calculate the Needed Water and Minncare Quantity

-Position Fogger

-Add Water

- -Connect Pressurized Air Source
- -Test System Operation

- -Adjust Gauges
- -Add Minncare
- -Start Spraying

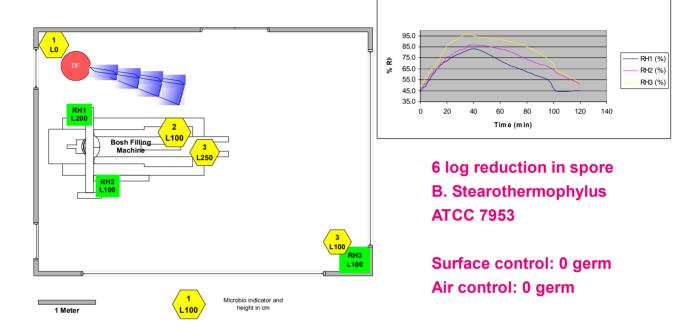
Dry Fog Setup – Software Support-Initial Calculations:

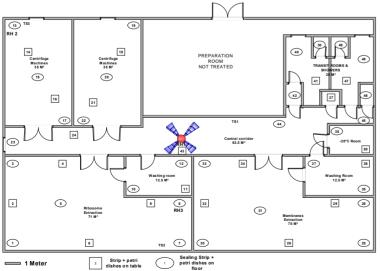
Position & Operate the System

Dry Fog – Air Residuals

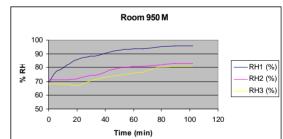
⇒Measure Using the Minncare Dry Fog Vapor Detection System

⇒Permissible Exposure Limits (PEL)


-Hydrogen Peroxide: 1 ppm


-Acetic Acid: 10 ppm

X Residuals on the surfaces : Much less than 0.00002 ml Acetic Acid / cm²


⇒EXAMPLE - 70 M³

⇒<u>EXAMPLE - 950 m³</u>

6 log reduction in spore **B. Stearothermophylus ATCC 7953**

Surface control: 0 germ Air control: 0 germ

Evaluation Customer Evaluation of Dry Fog

⇒ Diffusion Testing
⇒ Microbiological Testing

How Do Customers Validate Their Disinfection Process?

⇔Tools

-Spores Strips: Paper, SS, Glass, Plastic

-Inoculated Petri Dishes

-Surface Microbiological Controls

-Air Microbiological Controls

Cleanroom Disinfection Does Not Need a Specific Method or Specific Microorganisms for Process Validation. Controls Showing LRV Are Sufficient.

⇒Possible Microorganisms for Cleanroom Disinfection Process Validation

-Bacillus trophaerus (subtilis) ATCC 9372

-Geobacillus stearothermophilus ATCC 7953

-Bacilus cereus CIP783

-Anterococcus hirae CIP5855

-Use Caution with B. stearothermophilus ATCC 12980

Some Versions Packaged for Autoclave Tests (Sealed from Vapor)

MINNCARE DRY FOG SYSTEM

Current Methods of Room Disinfection

⇒Surface Wiping

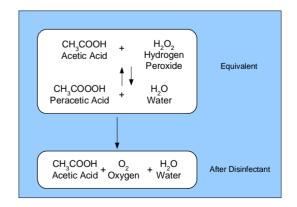
- ⇒Manual Spraying (with Spray Bottles)
- ⇒Heating Process (Vaporization)
- ⇒Cold Process Wet fogging

- Dry fogging

※ Disinfection is NOT a Cleaning Process

Currently Used Chemical Products

- ⇒Alcohol based
- ⇒Formaldehyde based
- ⇒Gluteraldehyde based
- ⇒Quaternary Ammonium Compounds
- ⇒Cocktails of the above


Current Problems

- ⇒Efficiency (more or less broad spectrum biocide)
- ⇒Adaptation of the Micro-Organisms
- ⇒Toxicity of the Chemicals Used
- ⇒Long Contact Time
- \Rightarrow Very Long Time for Venting
- \Rightarrow Neutralization Needed
- ⇔Corrosion
- ⇒Variability of Chemical Application
- ⇔Residuals

Minncare[®] Cold Sterilant

⇒An alternative solution for room

disinfection in Pharmaceutical, Biotech, Medical Facilities,...

Benefits of Minncare[®]

⇒Superior Biocidal Activity

- ⇒All Components are Ultra-pure, Pharmaceutical Quality
- ⇒US EPA (Environment Protection Agency) Registered Sterilant
- ⇒No Heavy Metal Trace Contamination / Stabilizers.
- ⇒Biodegradable Decomposes to Acetic Acid, Water and Oxygen
- \Rightarrow No Toxic Aldehyde Type Vapors, Easy to Vent
- ⇒Validated Residual Vapor Detection System

Minncare[®] Applications

⇒Water Systems Disinfection
Tanks, Piping, Resins, Filters, RO Membranes,...
⇒Surface Disinfection (Wiping and/or Manual Spraying)
⇒Fogging

Minncare[®] Biocidal Activity

Minncare^{\mathbb{R}} is a potent antimicrobial agent and is effective against a broad spectrum of microorganisms, including:

- ⇒Bacteria ⇒Yeast and Molds
- ⇒Mycobacteria ⇒Bacteria Spores
- ⇔Viruses

Activities of the most important biocides (Guyader, 1996)							
Biocides	Bac Gram -	teria Gram +	Myco- bacteria	Spores	Moulds	Yeasts	Virus
Peracetic acid	+++	+++		++	++	++	++
Alcohols	++	++		0	++	++	+
Alcohol (70?	++	++	0	+	+	++	+
Glutaraldehyde	+++	+++	++	+	+++	++	++
Quat Ammonium	+++	+*	0	0	+	+	+
Chlorine	+++	+++	++	++	++	++	++
Hydrogen Peroxyde	+++	+++		+	+	+	0
lodine	+++	+++	++	++	++	++	++
* Not active on Pseudomonas							

Minncare[®] Mechanism of Action

⇒Disrupts Sulfhydrl (-SH) and Sulfur (S-S) bonds in proteins and enzymes Important components in cells and membranes are broken by oxidative disruption.

⇒Impede cellular activity by disrupting chemosmotic function of lipoprotein cytoplasmic membrane transport through rupture or dislocation of cell walls

⇒Denature the properties of protein components by altering the nucleic acid structure of organisms.

⇒Damage vegetative cells by oxidation with hydroxy radicals.

 \Rightarrow Produces organic radicals that act as reducing agents for spores.

"NO CHANCE" For Micro-Organisms to Build a Resistance

Minncare[®] In Vitro Aqueous Testing

Minncare= Concentration .5%				
Species	Count per ml	Time for 100%		
		kill in minutes		
Bac. subtilis	6 ×10 ⁶	2.5		
Bac: stearothermophilus	6 × 10 ⁶	2.5		
Bac. subtiis NCTC 3610	2.4×10^{9}	5.0		
Bac. mesentericus	1.6 × 10°	5.0		
Clostr. perfringens	1 × 107	10.0		
Clastr. tyrobutyricum	1 × 107	5.0		
Sacchar. cereisiae	6 × 107	0.5		
Cand. mycoderma	1.4×10^{8}	0.5		
Hansenula anomala	6.4 × 10 ^a	0.5		
Pichia membronaefaciens	4.8×10^{8}	0.5		
Pen. camerunense	1.7 × 10 ^a	2.5		
Mucor plumbeus	3 × 10 ⁶	2.5		
Geotrichum candidum	2 × 107	0.5		
Byssochlamys nivea	6 × 107	0.5		
Staph. aureus	2.6 × 10°	0.5		
Strept. faecalis	4.6 × 10°	0.5		
Kleb. aerogenes	2.3 × 10°	0.5		
Ps. fluorescens	4.6×10^{9}	0.5		
Ps. aeruginosa	2 × 10°	0.5		
Salm. thyphimurium	2.8×10^{9}	0.5		
Coryneb. rubrum	1 × 107	1.0		
Leuconostoc spec.	5.3 × 10 ⁸	0.5		
Lactob. brevis	1.8 × 10°	0.5		

Minncare[®] AOAC Sporicidal Test

A total of 720 tests were performed on three lots of the test chemical. Results of the test are shown on the chart below.

Lot/Organism	Carrier type	Positives/Total
1 Bacillus subtilis	loop	0/60
1 Bacillus subtilis	cylinder	0/60
1 Clostridium sporogenes	loop	0/60
1 Clostridium sporogenes	cylinder	0/60
2 Bacillus subtilis	loop	0/60
2 Bacillus subtilis	cylinder	0/60
2 Clostridium sporogenes	loop	0/60
2 Clostridium sporogenes	cylinder	0/60
3 Bacillus subtilis	loop	0/60
3 Bacillus subtilis	cylinder	0/60
3 Clostridium sporogenes	loop	0/60
3 Clostridium sporogenes	cylinder	0/60

Estimated spore concentration of filter suspended 1 inch above	<u>B.</u> subtilis spores/filter		
Control: water			
10 ³ spores	9.6 x 10 ³ CFU*		
10 ⁶ spores	> 3 x 103 CFU		
Minncare [®] solution (1%)			
10 ³ spores	<1 CFU		
10 ⁴ spores	<1 CFU		
10 ⁵ spores	<1 CFU		
10 0p0.00			

Deactivation of Organisms by Minncare[®] Vapors

Minncare[®]Toxicity Assessment Summary

Toxicity	Specimen	Results	Reference
summary			
Oral toxicity	Male rats	LD ₅₀ = 2.43 (2.04-2.88) g/kg	Litchfield &
	Femal rats	LD ₅₀ = 2.10 (1.92-2.30) g/kg	Wilcoxon
Inhalation toxicity	Male rats	Established lethal concentration	
	Female rats	LC = 13,439 mg/cubic meter	
Skin sensitivity	Mice	No reaction	Burkhard's
	Humans	No visible effects	Test
Mucos membranes	New Zealand rabbits	Effects completely gone within 7 days	HH Draize
Dermatological	White Guinea	No difference between control	Klugman &
sensitivity qualities	pigs	and test group	Magnusson
Intravenous toxicity	Male rats	LD ₅₀ = 212 mg/kg	Litchfield &
			Wilcoxon

Minncare Dry Fog[™] - A Best Way for Clean Room Disinfection.

⇒An Integral Part of Modern Clean Room Disinfection Procedures

- \Rightarrow EPA Registered
- \Rightarrow Match FDA , PIC/S request.
- ⇒Superior "Dry" Delivery System
- ⇒Better Dispersion than "Wet" Systems
- $rac{=}$ Effective for Very Large Areas: 20 ~ 1000 M³
- \Rightarrow Better for Critical Applications

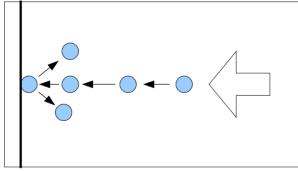
⇒Less Preparation Work

⇒Less Corrosion

⇒Less Residue

Droplet Size effect

⇒The Minncare Dry Fog System Produces 7.5 µm Droplets


-Droplets Behave Like Gas Particles

•Bounce Off Surfaces •Do Not Wet Surfaces

-Float in the Air Due to Brownian Motion.

10µm 1		100µm 30)0µm	0µm ¦
Ultra-Fine Atomization	Fine Atomization	Semi Fine	I COArse	Coarse Atomization
。 Dry Fog (under	● Fine Mist (10µm~100µ	Fine Drizz (100µr 300µr	le m	Thunderstorm (Over 1.0mm)

The Phenomenon of Dry Fog

⇒Small droplets bounce and do not burst upon collision.

⇒Large droplets burst and make things wet.

Better Dispersion

⇒Minncare Dry Fog Creates a Vapor State, It Disperses Throughout the Room More Completely Than a Liquid Mist.

⇒Better Dispersion Means More Surface Contact.

- \Rightarrow Even Hard to Reach Surfaces, Like Behind Cabinets, Under Tables.
- ⇒Less Condensation.

Relative Humidity

⇒Initial Relative Humidity Should Be <50%.

- ⇒Optimum Activity Between 70 and 80% Relative Humidity.(1)
- •Measure Using Optional Cable-Free Thermo Hygrometer.
- ⇒Maintain Relative Humidity Below 90% to Avoid Condensation
- Hideharu Shintani Agents of Sterilization, Disinfection, and Antisepsis Used for Medical and Food Affiliation. National Institute of Health Sciences, Japan

Room Size

⇒ The Number of Nozzles or Machines Required is Dependent on the Size of the Room ⇒ Each Nozzle Can Fog Up To 8,750 ft³ (250 m³) Effectively ⇒ Each Machine Can Fog Up To 35,000 ft³ (1,000 m³) With 4 Nozzles

Machine Positioning

⇒Strategically Place the Machine in the Room

⇒Aim Nozzles Away from Nearby Walls and Equipment

⇒Position the Machines to Allow an Easy Flow of the Fog to All Parts of the Area

General Information

⇒SETUP

-Amount of Minncare: 1.5 ml / M³ of Room Volume

- -Total Solution Volume: Function of the Initial RH
- -Ideal Initial Relative Humidity: less than 55%
- –Ideal Room Temperature: 20-25°C

⇒ PROCESS

-Fog Dispersion Time: 15 - 120 min

-Exposure Time: 1 hour

-Venting Time: 0.5 - 2 hours

⇒ TOTAL PROCESS TIME: 2 - 5 hours (including venting)

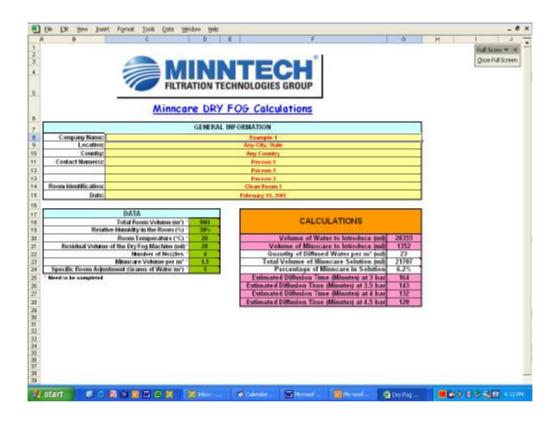
<u>%Notes:</u>1)All individuals MUST evacuate the room during the process.

Assure Safe Operation with the Dry Fog Remote Control Unit

2)After confirmation of chemical vapor residuals below limits (using the Minncare Dry Fog Vapor Detection System) the room may be returned to service.

The General Procedure

–Unpack & Assemble the System


-Calculate the Needed Water and Minncare Quantity

-Position Fogger

-Add Water

- -Connect Pressurized Air Source
- -Test System Operation

- -Adjust Gauges
- -Add Minncare
- -Start Spraying

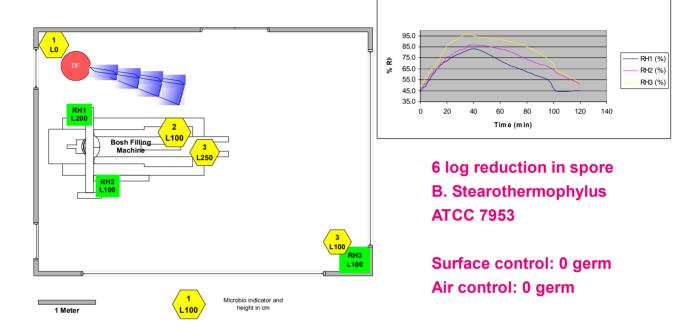
Dry Fog Setup – Software Support-Initial Calculations:

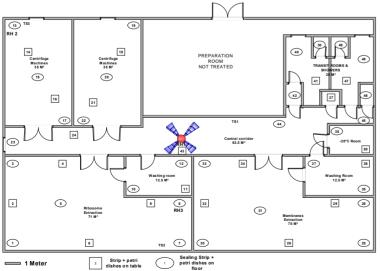
Position & Operate the System

Dry Fog – Air Residuals

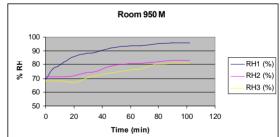
⇒Measure Using the Minncare Dry Fog Vapor Detection System

⇒Permissible Exposure Limits (PEL)


-Hydrogen Peroxide: 1 ppm


-Acetic Acid: 10 ppm

X Residuals on the surfaces : Much less than 0.00002 ml Acetic Acid / cm²


⇒EXAMPLE - 70 M³

⇒<u>EXAMPLE - 950 m³</u>

6 log reduction in spore **B. Stearothermophylus ATCC 7953**

Surface control: 0 germ Air control: 0 germ

Evaluation Customer Evaluation of Dry Fog

⇒ Diffusion Testing
⇒ Microbiological Testing

How Do Customers Validate Their Disinfection Process?

⇔Tools

-Spores Strips: Paper, SS, Glass, Plastic

-Inoculated Petri Dishes

-Surface Microbiological Controls

-Air Microbiological Controls

Cleanroom Disinfection Does Not Need a Specific Method or Specific Microorganisms for Process Validation. Controls Showing LRV Are Sufficient.

⇒Possible Microorganisms for Cleanroom Disinfection Process Validation

-Bacillus trophaerus (subtilis) ATCC 9372

-Geobacillus stearothermophilus ATCC 7953

-Bacilus cereus CIP783

-Anterococcus hirae CIP5855

-Use Caution with B. stearothermophilus ATCC 12980

Some Versions Packaged for Autoclave Tests (Sealed from Vapor)